الدوال المطردة تمامًا وعلاقتها بالدوال الخاصة

محمد سويقات, عبد الباسط يونسو, أحمد بكداش, نبيل سلمان

Abstract


ناقشنا في هذا البحث مفهوم الدوال المطردة تمامًا وعلاقتها ببعض الدوال الخاصة الشهيرة، كدوال (غاما، كيو ميرز، المقطع الاسطواني، غوص الهندسي، ماكدونالد، ويتكر، ميتاك ــــ لفلور المعممة). أوجدنا علاقة الاطراد التام بالتحويلات التكاملية المطردة تمامًا تحت شروط التقارب، وأيا كانت الدالة غير السالبة كتحويلات (هانكل، لامبيرت، ستيلتجس، لابلاس). كما يتم دراسة انماط أخرى من حالة الدوال المركبة التي تعطى بدلالة سلاسل القوى ذات عوامل غير سالبة وتحويلات تكاملية لدوال غير سالبة مطردة تمامًا ودوال التحويلات التكاملية مع نواة متجانسة من الدرجة الاولى وايضا دوال لوغاريتميه مطردة تمامًا. في النهاية ناقشنا صف الدوال المطردة تمامًا التي ترتبط بتحويل ستيلتجس المعرف كصف من الدوال المحققة لمتراجحات بعض الدوال الخاصة، وبعض المتراجحات لأجل هذه الدوال الناتجة من الاطراد التام غير المتناقصة او محدبة، لكن أغلبها مطردة تمامًا.

In this paper, we discuss the completely monotonic functions and their relation to some of the famous special functions such as (Gamma, Kumar, Parabolic cylinder, Gauss hypergeometric, MacDonald, Whittaker and Generalized Mittag-Leffler) function. In addition, the relationship of the completely monotonic integrations with absolute progress under conditions of convergence such as transformations (Hankel, Lambert, Stieltjes and Laplace).

We will found other modes of composite functions given in terms of non-negative power chains and integrative transformations of completely monotonic non-negative functions, the state of integrative transform functions with a homogeneous nucleus of the first order, and the logarithmically completely monotonic functions.

The importance of the row of completely monotonic functions that are associated with the transformation of the Stieltjes defined as a class of special functions regression functions. Some of the oscillations of these functions resulting from completely monotonic functions are not decreasing or convex, but most of them are completely monotonic functions.


References


MILLER, K.S. ; SAMKO, S.G.. A note on the complete monotonicity of the generalized Mittag-Leffler function. Real Anal. Exchange, 23:753–755, 2011.

SAIGON, M. ; KILBAS, A.A. Integral representations and complete monotonicity of various quotients of Bessel functions. Canada. J. Math., 29:1198–1207, 2009.

ISMAIL. M.E.H. Complete monotonicity of modified Bessel functions. Proc. Amer. Math. Soc, 108, 2013:353–361.

SCHNEIDER. W.R. MILLER. An infinitely divisible distribution involving modified Bessel functions. Proc. Amer. Math. Soc, 85, 2003:233–238.

ISMAIL. M.E.H. On Mittag- Leffler, type function and applications. Integer. Transf. and Special Functions, 7, 2004:97–112.

SCHNEIDER. W.R. Completely monotone generalized Mittag-Leffler functions. Expo. Math., 14, 2009:3–16, 201.

Andrews,G.E. Askey, R. Roy, R. Special Functions, Cambridge Univ. Press, Cambridge, 2004.


Full Text: PDF

Refbacks

  • There are currently no refbacks.


رئيس التحرير: الأستاذ الدكتور هاني محمود شعبان

هيئة التحرير , أمين التحرير: د.أمير درويش تفيحة