العلاقة بين النواة الدرجية ووضعية الممرات الدرجية الثلاث في المركبة المحدودة للمتممة

Authors

  • عدنان ظريف
  • رامي شاهين
  • نجود حسن

Abstract

One of the most important subjects that the starshaped sets theory concerned withis specifying the kernel of the starshaped set and vision the points and regions for each other. So in staircase visibilitytheresearcher Rajeev Motwani proved that the points of separating regions with dents cannot see each other. After that Breen could find a way for specifying the kernel of starshaped orthogonal polygon when this orthogonal polygon is simply connected. In this paper we will generalize the previous way when the closed orthogonal polygon is secondly connected and the bounded component for the complement is union of three staircase paths, every path consists of more than two edges. We will prove that the kernel is only one component. تهتم نظرية المجموعات النجمية بتعيين نواة المجموعة النجمية وأيضاً رؤية النقاط والمناطق لبعضها البعض، ففي حالة الرؤية الدرجية برهن الباحث راجيف موتواني أن نقاط المناطق المفصولة عن بعضها بالأغوار لا ترى بعضها بعضاً، وبعد ذلك تمكنت الباحثة مارلين برين من إيجاد طريقة لتعيين نواة المضلع المتعامد النجمي درجياً عندما يكون المضلع المتعامد بسيط الترابط. في هذا البحث سوف نعمم الطريقة السابقة عندما يكون المضلع المتعامد المغلق ثنائي الترابط،وجبهة المركبة المحدودة للمتممة اجتماعاً لثلاث ممرات درجية كل منها مؤلف من أكثر من ضلعين، وسنثبت أن النواة تتألف من مركبة واحدة فقط.

Downloads

Published

2016-09-08

How to Cite

1.
ظريف ع, شاهين ر, حسن ن. العلاقة بين النواة الدرجية ووضعية الممرات الدرجية الثلاث في المركبة المحدودة للمتممة. TUJ-BA [Internet]. 2016Sep.8 [cited 2024Sep.14];37(4). Available from: https://journal.tishreen.edu.sy/index.php/bassnc/article/view/1955

Most read articles by the same author(s)

1 2 > >>