Predicting of Traffic Accident in Lattakia City Using Artificial Neural Networks
Keywords:
Prediction , model , traffic accidents , artificial neural networks.Abstract
This study constitutes a preliminary step to develop a mathematical model for predicting traffic accidents in the city of Lattakia, based on a number of external factors, which include engineering characteristics, traffic incursions, and traffic accident data. As for its main goal, it is to reduce the number of traffic accidents expected in the future on the main streets in the city, as the study was conducted on various arterial streets in them in terms of their importance and in terms of the number of traffic accidents recorded on them, and in terms of the diversity of their engineering characteristics, in order to have sufficient familiarity with the traffic conditions in The city for various reasons, does not depend on the human behavior of the drivers or on the characteristics of the vehicle.
A statistical analysis of traffic accident data for the years 2014, 2015, 2016 and 2017 was conducted on urban streets in Lattakia, where accidents were classified according to their severity, time of occurrence and place of their occurrence, and the necessary data were collected and digitized within a software environment in Microsoft Excel, and then a model was built Predicting the use of the artificial neural networks tool in the MATLAB program, in which data for 319 traffic accidents that were recorded in the years 2015, 2016 and 2017, were entered, which were divided into three groups (training, validation and testing). The structural neural network (10-10-1) gave high values of the correlation coefficient, as the total R value during the three stages was 0.931236, which is very close to one, and therefore the designed network is ideal and achieves the response to predict traffic accidents monthly with very high accuracy.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 �ttps://creativecommons.org/licenses/by-nc-sa/4.0/

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.