تقييم البارامترات الفعالة للجريان السطحي في حوض نهر الكبير الجنوبي باستخدام شبكاتElman الصنعيّة

Authors

  • غطفان عبد الكريم عمّار
  • بادية يوسف حيدر
  • ميس محمد عليان

Abstract

تعدّ النمذجة الدقيقة للعلاقة بين الهطول المطري_الجريان السطحي (Rainfall_Runoff) (R_R) مهمة معقدة جدّاً, على الرغم من حقل النمذجة الواسع الذي يشمل كلّاً من الطرائق الموجهة بالمعرفة والطرائق الموجهة بالبيانات. تتطلب النماذج الموجهة بالمعرفة كمية ضخمة من البارامترات، وبالتالي فهي تعاني من تأثير كثرة البارامترات. هذا مايجعل العاملين في حقل النمذجة يبحثون عن طرائق نمذجة بسيطة تتطلب عدد قليل من البارامترات مثل الطرائق الموجهة بالبيانات, لذلك تهدف الدراسة الحالية إلى استخدام الشبكات العصبية الصنعية التي تعدّ إحدى أنواع هذه الطرائق لنمذجة العلاقة R_R في حوض نهر الكبير الجنوبي في محافظة طرطوس. حيث تمّ الاعتماد على شبكة Elman الصنعية للتنبؤ بالجريان السطحي باختبار أربعة وعشرين نموذجاً ذات معماريات مختلفة, كما تمّ اختبار كلّ نموذج باستخدام عدد مختلف من العصبونات الخفية, وذلك باستخدام مكتبة nntool المتاحة في حزمة برمجيات Matlab. أثبتت نتائج هذه الدراسة أن النموذج الذي يحوي في طبقة المدخلات على كلٍّ من درجة الحرارة, الرطوبة النسبية, التبخر والهطول المطري بتأخر زمني مقداره ثلاثة أيام (-3:0) إضافةً إلى قيم سابقة للتصريف بتأخر زمني (-3:-1) ومع استخدام 25 عصبون في الطبقة الخفية يعطي أفضل أداء بمتوسط مربع خطأ مقداره 2.8*10^-5, ومعامل ارتباط 0.96 لمجموعة البيانات المستخدمة, تمّ التوصل إلى أنّ شبكات Elman تعطي نتائج جيدة في نمذجة العلاقة R_R وبالتالي يمكن اعتبارها بديلاً للطرائق التقليدية في نمذجة العلاقة R_R. Accurately modeling rainfall-runoff (R-R) transform remains a challenging task despite that a wide range of modeling, either knowledge-driven or data-driven. knowledge-driven models need a large amount of parameters, so it suffers from plenty numbers of parameters, for this reason the hydrologists start looking for a simple modeling methods, that need a few parameters such as data _driven methods, so The present study amis to use artificial neural network, which is one type of this methods for modeling the relationship between rainfall and runoff in Alkabeer Aljanonbee river catchment in Tartous City. Elman Neural Network is depended on for prediction of runoff by testing twenty four models have different architectures. So all models have been tested by using different numbers of neurons in the hidden layer, by using nntool book, which is available in the Matlab program. The results of the research verify that the model which has each of temperature, relative humidity, evaporation and rainfall in the input layer with time delay equal to three days (0:-3), in addation to preveous value of runoff (-1:-3), gives a best performance for used data with mean square error equal to 2.8*10^-5, and correlation coefficient 0.96. So it has been reached that Elman network technology gives a good results in modeling the relation rainfall_runoff So it could be a good alternative instead of traditional approaches.

Downloads

Published

2016-07-12

How to Cite

1.
عمّار غعا, حيدر بي, عليان مم. تقييم البارامترات الفعالة للجريان السطحي في حوض نهر الكبير الجنوبي باستخدام شبكاتElman الصنعيّة. Tuj-eng [Internet]. 2016Jul.12 [cited 2024Dec.8];37(2). Available from: https://journal.tishreen.edu.sy/index.php/engscnc/article/view/1658

Most read articles by the same author(s)