تقدير التّبخر- نتح المرجعي الشَّهري في منطقة طرطوس باستخدام الشَّبكة العصبيَّة الصنعيَّة
Abstract
يشكّل التبخر- نتح أحد عناصر الدورة الهيدرولوجية، الذي يصعب قياس كمياته الفعلية في الشروط الحقلية، لذلك يجري تقديره اعتماداً على الحسابات بعلاقات تجريبية تعتمد على بيانات عناصر المناخ، وتتضمن تلك التقديرات أخطاء متنوّعة بسبب عمليات التقريب. ويهدف البحث إلى تقدير دقيق لكمية التبخر- نتح المرجعي الشهري في منطقة طرطوس (على الساحل الشرقي للبحر المتوسط)، ويعتمد البحث على تقانة الشبكة العصبية الصنعية، حيث بُني الأنموذج الرياضي باستخدام NN-tool box إحدى أدوات الماتلاب، واعتمد الأنموذج على البيانات الشهرية لدرجة حرارة الهواء والرطوبة النسبية في محطة طرطوس، كما استُخدِمت بيانات التبخر الشهري من حوض التبخر الأميركي صنف A لغرض التحقق من صحة أداء الشبكة، بعد تعديل نتائجها باستخدام تقانة Simulink المتاحة في حزمة برمجيات الماتلاب.
أثبتت نتائج الدراسة أنَّ الشبكة العصبية الصنعيَّة متعددة الطبقات، وذات الانتشار العكسي للخطأ تعطي نتائج جيدة في تقويم التبخر– نتح المرجعي الشهري، اعتماداً على مجموعة البيانات المستخدَمة.
Evapotranspiration forms one of the elements of the hydrological cycle that is hard to measure its actual amounts in field conditions. So it is estimated in terms of calculations of experimental relations depending on climatic elements data. These estimations include different errors because of approximation processes. This research aims to calculate an estimation of the monthly reference evapotranspiration amount in Tartous (on the east coast of the Mediterranean Sea), depending on the technique of Artificial Neural Network (ANN); the mathematical model is built by the (NN-tool box), which is one of the Matlab tools, based on monthly air temperature and relative humidity data taken from Tartous meteorological station. The data of monthly pan evaporation (Class A pan) has been used after modifying its results for the purpose of checking the performance accuracy of the network, using Simulink techniques of Matlab Programs Package.
The results of the research verify that a multi-layer ANN of error back-propagation algorithm gives good results in estimating monthly reference evapo-transpiration for the data used.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 �ttps://creativecommons.org/licenses/by-nc-sa/4.0/

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.