تقدير التّبخر اليومي من بحيرة سد 16 تشرين باستخدام الشّبكات العصبيّة الصنعيّة
Abstract
إن التقدير الدقيق لفواقد التّبخر يلعب دوراً هاماً في العديد من تطبيقات الموارد المائيّة كإدارة الأنظمة الهيدرولوجية والهيدروليكية والزراعية. وعلى الرغم من وجود صيغ تجريبية متاحة لتقدير التّبخر إلا أن أداءها ليس مرضياً بسبب الطبيعة المعقدة لعملية التّبخر، وعلاقته غير الخطية مع غيره من عناصر الدورة الهيدرولوجية. لهذا الغرض، تم تطوير نموذج لشبكة عصبية صنعيّة (ANN) لتقدير التّبخر اليومي من بحيرة سد 16 تشرين في مدينة اللاذقية. استخدمت الشّبكة العصبيّة الصنعيّة أمامية التغذية ذات الانتشار العكسي للخطأ مع طبقة خفية واحدة لإنشاء النموذج. تم تقييم شبكات مختلفة مع عدد مختلف من الخلايا العصبيّة. استخدمت البيانات اليومية المتوافرة لدرجة الحرارة الوسطية، الرّطوبة النسبيّة الوسطية، سرعة الرّياح الوسطية، ساعات السطوع الشّمسي والتّبخر لتدريب واختبار النماذج المقدمة. كما استخدم معامل الارتباط (R) وجذر متوسط مربّع الخطأ (RMSE) لتقييم دقة النموذج المقترح.
أظهرت الدراسة أن أفضل نموذج لتقدير التّبخر هو (1-13-4) ANN مع معامل ارتباط (R=90.5%) من أجل مجموعة التحقق وجذر متوسط مربّع الخطأ (RMSE=0.877mm) للمجموعة ذاتها. تشير نتائج هذه الدراسة إلى الكفاءة الكبيرة للشّبكة العصبيّة الصنعيّة في تقدير فواقد التّبخر من منطقة الدراسة.
Accurate estimation of potential evaporation, has a great significance in many water resources applications such as management of hydrologic, hydraulic and agricultural systems. Although there are empirical formulas available for Evaporation estimation, but their performances are not all satisfactory due to the complex nature of the evaporation process and nonlinear relationship with other hydrological cycle elements. For this purpose, artificial neural network (ANN) model was developed to estimate daily potential evaporation in 16 Tishreen Dam Reservoir located in Lattakia. The feed forward back propagation network with one hidden layer has been used to construct the mode. Different networks with different number of neurons were evaluated. Daily observations of average temperature, average relative humidity, average wind speed, sunshine hours and evaporation have been used to train and test the developed models. Correlation coefficient (R) and Root mean square error (RMSE) were employed to evaluate the accuracy of the proposed model.
The study showed the best model for evaporation estimation is ANN (4-13-1) with correlation coefficient (R) of 90.5% and the root-mean-square error value (RMSE) of 0.877mm/day for validation dataset. The findings of this study suggest the usefulness of ANN technique in estimating the evaporation losses from the study area.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 �ttps://creativecommons.org/licenses/by-nc-sa/4.0/

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.