حد أدنى وحد أعلى لعدد السيطرة من المرتبة 2 ﻠ من أجل و عدد كيفي.
Abstract
ليكن لدينا البيان من المرتبة مع مجموعة الرؤوس ومجموعة الأضلاع . ولتكن مجموعة جزئية من مجموعة رؤوس البيان , تدعى بأنها 2 - مجموعة سيطرة للبيان إذا كان لأجل كل رأس يوجد مجاورين له على الأقل من رؤوس المجموعة . كما و يرمز لعدد السيطرة من المرتبة 2 بالرمز و هو عدد عناصر أصغر 2- مجموعة سيطرة. في هذا البحث سوف سيتم إيجاد حد أدنى وحد أعلى لعدد السيطرة من المرتبة الثانية للجداء الديكارتي لمسارين في حالة و عدد كيفي. Let be a graph of order n. with vertices and edges . A set D of vertices of a graph is called 2- dominating if every vertex has at least two neighbors in D. let denotes The 2- domination number of a graph G, , is the order of a smallest 2- dominating set of G. In this paper, we found lower and upper bounds of 2- domination number of the cartesian product of two paths for m=6,7 and arbitrary n.Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.