خوارزميات مقترحة من نوع تحليل LU لحل مسائل البرمجة الخطية كثيرة الأصفار
Abstract
يعتبر حل مسائل البرمجة الخطية باستخدام طرائق تحليل LU كثيرة الأصفار هي مسألة مفتوحة، مما يجعلها مجالا مهما للبحث و التطوير. لذلك نكرس اهتمامنا في هذه المقالة على تطوير خوارزميات من نوع تحليل LU كثيرة الأصفار عند تنفيذ خوارزمية سيمبليكس المعدلة. نصف في هذه المقالة خوارزميتين فعالتين تعتمدان على تحليل LU لحل مسألة البرمجة الخطية كثيرة الأصفار. نجري العديد من تجارب المحاكاة الحاسوبية لتوضيح فعالية هاتين الخوارزميتين. نقارن النتائج الحاصلة مع تلك الناتجة من تطبيق طريقة Golub – Bartels وطريقة Golub – Bartels كثيرة الأصفار و طريقة Forrest – Tomlin و طريقة Reid لتبيان فعالية الخوارزميات المطورة. نبين من التجارب العددية أن الخوارزميتين المقترحتين هما الأفضل بين الخوارزميات المدروسة ولذلك نوصي باستخدامهما في المكتبات البرمجية الجاهزة كبديل عن الطرائق الحالية لحل مسائل البرمجة الخطية كثيرة الأصفار.
The solution of linear programming problems by sparse LU decomposition is an open problem providing room for further research. This paper tries to develop sparse LU decomposition – based algorithms when implementing Simplex algorithm.
In this paper, we describe efficient algorithms which are based on LU decomposition for solving sparse linear programming problems. Many numerical simulations are carried out to illustrate the efficiency of the proposed algorithms. We compare the obtained results with Golub – Bartels method, Sparse Golub – Bartels method, Forrest – Tomlin method and Reid method to show the efficiency of the proposed algorithms. From the numerical experiments carried out, it is shown that the proposed algorithms are much better than that of available methods. So we recommend using this method in software packages as new alternative for solving the sparse linear programming problems.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.