سلوك التقارب العددي و تحليل الخطأ للنموذج المعمم لتعلم مشكلة باستخدام خوارزميتي أولر و أولر– شبه المنحرف وفق Matlab و Maple
Abstract
عندما نصادف مشكلة ما و نريد حلها فينبغي أن نجمع المعلومات الضرورية المتعلقة بها. في هذه المقالة، قدمنا النموذج الرياضي المعمم لتعلم مشكلة. درسنا سلوك الخطأ و التقارب لطريقتين عدديتين هما خوارزمية أولر و خوارزمية أولر – شبه المنحرف بتطبيقهما على النموذج الرياضي الناتج. لتوضيح سلوك الحل و الخطأ طبقنا هاتين الخوارزميتين على النموذج المعمم باستخدام Maple و Matlab. طورنا برمجيات لتنفيذ الخوارزميتين المدروستين لحل النموذج المعمم. وجدنا عدديا أن القيمة المثلى لطول الخطوة هي و أن الخطأ المطلق الموافق يساوي الصفر. أجرينا تجارب محاكاة عديدة لطرائق عددية مختلفة. كانت أفضل هذه الطرائق rk2 , rk 23 , rk4 , rk45 , Embedded rk , Modified Euler (حيث rk هي اختصارا من Runge-Kutta). تبين من التجارب العددية أن القيمة المثلى لطول الخطوة هي أيضا إلا أن أداء طريقة أولر و أولر – شبه المنحرف هو عموما الأفضل في جميع التنفيذات و من أجل خيارات مختلفة. أخيرا، أجرينا تعديلا على خوارزمية أولر – شبه المنحرف يتفادى حل مسألة غير خطية في كل خطوة باستخدام Maple.
When we face a problem and want to solve it, we must collect the required information related to it. In this paper, we introduced generalized model of learning of problem. We studied error behavior and the convergence of the Euler's and Euler-Trapezoid's algorithms by applying them to the model obtained by using Maple and Matlab. We developed software for implementing the considered methods when solving the model obtained. Numerically, we found that the optimal value of step size was and the corresponding absolute error was zero. We carried out more numerical different methods. The best methods were rk2, rk23, rk4, rk45, embedded rk, Modified Euler, but the performance of considered methods was the best. Finally, we made modification to Euler-Trapezoid method that avoids the solution of non-linear problem by Maple.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.