مقارنة بعض طرائق كريلوف المسرعة لحل جمل المعادلات الخطية غير المتناظرة كثيرة الأصفار
Abstract
Large sparse non-symmetric linear systems of equations often occur in many scientific and engineering applications. In this paper, we present a comparative study of some preconditioned Krylov iterative methods, namely CGS, Bi-CGSTAB, TFQMR and GMRES for solving such systems. To demonstrate their efficiency, we test and compare the numerical implementations of these methods on five numerical examples. The preconditioners considered here are incomplete LU-decomposition (ILU), Symmetric Successive Over Relaxation (SSOR), and Alternating Direction Implicit (ADI). The ILU preconditioner is shown to be extremely effective in achieving optimal convergence rates for the class of problems considered here. Finally, our results show that the GMRES is the best among the considered iterative methods.
تظهر جمل المعادلات الخطية ، غير المتناظرة ، كثيرة الأصفار ، من مراتب عليا. في العديد من التطبيقات العلمية والهندسية. في هذا العمل، نجري دراسة مقارنة لبعض طرائق كريلوف التكرارية المسرعة وهي الطرائق CGSو Bi-CGSTABو TFQMR و GMRES لحل هذا النوع من جمل المعادلات. المسرعات المدروسة هنا هي تحليل LU غير التام (ILU) و المسرع فوق الاسترخاء المتتالي التناظري (SSOR) و مسرع الاتجاهات الضمنية المتناوبة (ADI). تبين أن المسرع ILU فعال إلى حد كبير في إنجاز معدلات تقارب مثلى من أجل صف المسائل المدروسة هنا. أخيرا، تبين تجاربنا أن طريقةGMRES(10) كانت هي الأفضل بين جميع الطرائق التكرارية المدروسة.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.