التنبّؤ بالتبخّر الإنائي الشّهري في محطّة حمص المناخيّة باستخدام الشبكات العصبيّة الاصطناعيّة
Abstract
يعتبر التبخّر مكوّناُ أساسيّاً في الدورة الهيدرولوجيّة، وهو يلعب دوراً مؤثّراً في تطوير وإدارة الموارد المائيّة. تهدف هذه الدراسة إلى التنبّؤ بالتبخّر الإنائي الشهري في محطة حمص المناخيّة باستخدام الشبكات العصبيّة الاصطناعيّة. وقد اعتمدت الدراسة من أجل ذلك على القيم الشهريّة لدرجة حرارة الهواء والرطوبة النسبيّة فقط كمدخلات، واعتمدت التبخّر الإنائي الشهري كمُخرج للشبكة. استُخدمت خوارزميّة الانتشار العكسي في عمليّة تدريب وتحقيق الشبكة مع تغيير طرائق التدريب وعدد الطبقات الخفيّة وعدد العصبونات في كل طبقة منها، وقد أظهرت النتائج القدرة الجيّدة للشبكة العصبيّة الاصطناعيّة ذات الهيكليّة 2-10-1 على التنبؤ بقيم التبخر الإنائي الشهري بمعامل ارتباط كلّي(R) 96.786% وبجذر متوسّط مربّعات الأخطاء (RMSE) 24.52 mm/month لمجموعة البيانات الكاملة، وقد أوصت الدراسة باستخدام تقنية الشبكات العصبية الاصطناعية لتحديد العناصر الأكثر تأثيراً على التبخر. Evaporation is a major meteorological component of the hydrologic cycle, and it plays an influential role in the development and management of water resources. The aim of this study is to predict of the monthly pan evaporation in Homs meteostation using Artificial Neural Networks (ANNs), which based on monthly air temperature and relative humidity data only as inputs, and monthly pan evaporation as output of the network. The network was trained and verified using a back-propagation algorithm with different learning methods, number of processing elements in the hidden layer(s), and the number of hidden layers. Results shown good ability of (2-10-1) ANN to predict of monthly pan evaporation with total correlation coefficient equals 96.786 % and root mean square error equals 24.52 mm/month for the total data set. This study recommends using the artificial neural networks approach to identify the most effective parameters to predict evaporation.Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 ttps://creativecommons.org/licenses/by-nc-sa/4.0/

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.